Powerful Tools and Techniques for
Collaborative Software Development

Version Control with

’ : Jon Loeliger &
O’REILLY Matthew McCullough

Version Control with Git, Second Edition
by Jon Loeliger and Matthew McCullough

Copyright © 2012 Jon Locliger. All rights reserved.
Printed in the United States of Amenica.

Published by O’Reilly Media, Inc., 1003 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information. contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Andy Oram Indexer: Nancy Guenther on behalf of Potomac
Production Editor: Iris Febres Indexing, LLC
Copyeditor: Absolute Service, Inc. Cover Designer: Karen Montgomery
Proofreader: Absolute Service, Inc. Interior Designer: David Futato

llustrators: Robert Romano and Rebecca Demarest
May 2009: First Edition.
August 2012: Second Edition.

Revision History for the Second Edition:
2012-08-03 First release
2013-06-21 Second release

Sec http:/loreilly.com/cataloglerrata.csp?isbn=9781449316389 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo arc registered trademarks of
O'Reilly Media. Inc. Version Control with Git, the image of the image ot a long-cared bat, and related
trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O'Reilly Media. Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume

no responsibility for errors or omissions, or tor damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-31638-9
[LSI]
1371751874

Table of Con_tents

BENER it raentifrclienty o I ot ondaiatien Meprboel et ol sk rsrs et tess srirs crrs o xi
1. Introduction 8 AT B8 i R R A R 5 S e i i 1
Background 1
The Birth of Git 2
Precedents 4
Timeline 6
What’s in a Name? 7

s IS b 8 it e s 0 i g e STl e o 9
Using Linux Binary Distributions 9
Debian/Ubuntu 9

Other Binary Distributions 10
Obtaining a Source Release 11
Building and Installing 11
Installing Git on Windows 13
Installing the Cygwin Git Package 14
Installing Standalone Git (msysGit) 14

3; SORUMIVG SABIRE - 1.0 c 0§ 55 o ey wen 55 i 544 e i s ol s A . e i e Wi 19
The Git Command Line 19
Quick Introduction to Using Git 21
Creating an Initial Repository 21
Adding a File to Your Repository 22
Configuring the Commit Author 24
Making Another Commit 24
Viewing Your Commits 25
Viewing Commit Differences 26
Removing and Renaming Files in Your Repository 26
Making a Copy of Your Repository 27
Configuration Files 28

Configuring an Alias
Inquiry

4. BasicGit Concepts

Basic Concepts
Repositories
Git Object Types
Index
Content-Addressable Names
Git Tracks Content
Pathname Versus Content
Pack Files

Object Store Pictures

Git Concepts at Work
Inside the .git Directory
Objects, Hashes, and Blobs
Files and Trees
A Note on Git’s Use of SHA1
Tree Hierarchies
Commits
Tags

--

5. FileManagementandthelndexc.cvvuiviniinnennnennnnnnnnns
It’s All About the Index
File Classifications in Git
Using git add
Some Notes on Using git commit
Using git commit --all
Writing Commit Log Messages
Using git rm
Using git mv
A Note on Tracking Renames
The .gitignore File
A Detailed View of Git’s Object Model and Files

G COMITIRS o oic 5me s w104 3755045 90 im0 08 i m s w5 s o
Atomic Changesets
Identifying Commits
Absolute Commit Names
refs and symrefs
Relative Commit Names
Commit History
Viewing Old Commits

30
30

3
31
31
32
33
33
34
35
36
36
39
39
40
41
42
43
44
46

47
48
48
50
32
52
54
54
56
57
58
60

65
66
67
67
68
69
72
72

iv | Tableof Contents

Commit Graphs
Commit Ranges
Finding Commits
Using git bisect
Using git blame
Using Pickaxe

Branchesooiiiiiii

Reasons for Using Branches

Branch Names
Dos and Don’ts in Branch Names

Using Branches

Creating Branches

Listing Branch Names

Viewing Branches

Checking out Branches
A Basic Example of Checking out a Branch
Checking out When You Have Uncommitted Changes
Merging Changes into a Different Branch
Creating and Checking out a New Branch
Detached HEAD Branches

Deleting Branches

Forms of the git diff Command

Simple git diff Example

git ditf and Commit Ranges

git diff with Path Limiting

Comparing How Subversion and Git Derive diffs

WUOTEIE i 00 0o oownms 5o i s e w6 8 s 50 5

Merge Examples
Preparing for a Merge
Merging Two Branches
A Merge with a Conflict
Working with Merge Conflicts
Locating Conlflicted Files
Inspecting Conflicts
How Git Keeps Track of Conflicts
Finishing Up a Conflict Resolution
Aborting or Restarting a Merge
Merge Strategies
Degenerate Merges

74
78
83
83
87
88

.............. 89

89
90
91
91
93
94
94
97
97
98
99
101
102
103

............. 107

108
112
115
117
119

.............. 121

121
122
122
124
128
129
129
134
135
137
137
140

Table of Contents | v

Normal Merges 142

Specialty Merges 143
Applying Merge Straregies 144
Merge Drivers 145
How Git Thinks About Merges , 146
Merges and Git’s Object Model 146
Squash Merges 147
Why Not Just Merge Each Change One by One? 148
10, Altering Commitsovuuiuiiniinsiei e 151
Caution About Altering History 152
Using git reset 154
Using git cherry-pick 161
Using git revert 163
reset, revert, and checkout 164
Changing the Top Commit 165
Rebasing Commits 167
Using git rebase -i 170
rebase Versus merge 174
11. TheStashandtheReflogoeuvuviiniiinii 181
The Stash 181
The Reflog 189
12. Remote Repositoriesvuuivnenenninineiinieei 195
Repository Concepts 196
Bare and Development Repositories 196
Repository Clones 197
Remotes 198
Tracking Branches 199
Referencing Other Repositories 200
Referring to Remote Repositories 200
The refspec 202
Example Using Remote Repositories 204
Creating an Authoritative Repository 205
Make Your Own Origin Remote 206
Developing in Your Repository 208
Pushing Your Changes 209
Adding a New Developer 210
Getting Repository Updates 212
Remote Repository Development Cycle in Pictures 217
Cloning a Repository 217
Alternate Histories 218

vi | Table of Contents

13.

Non-Fast-Forward Pushes

Fetching the Alternate History

Merging Histories

Merge Conflicts

Pushing a Merged History
Remote Configuration

Using git remote

Using git config

Using Manual Editing
Working with Tracking Branches

Creating Tracking Branches

Ahead and Behind
Adding and Deleting Remote Branches
Bare Repositories and git push

Repository Managementccovivivunnnn..,

A Word About Servers

Publishing Repositories
Repositories with Controlled Access
Repositories with Anonymous Read Access
Repositories with Anonymous Write Access
Publishing Your Repository to GitHub

Repository Publishing Advice

Repository Structure
The Shared Repository Structure
Distributed Repository Structure
Repository Structure Examples

Living with Distributed Development
Changing Public History
Separate Commit and Publish Steps
No One True History

Knowing Your Place
Upstream and Downstream Flows
The Maintainer and Developer Roles
Maintainer-Developer Interaction
Role Duality

Working with Multiple Repositories
Your Own Workspace
Where to Start Your Repository
Converting to a Different Upstream Repository
Using Multiple Upstream Repositories
Forking Projects

219
221
222
223
223
223
224
225
226
227
227
230
231
232

................. 235

235
236
236
238
242
242
243
244
244
244
246
248
248
249
249
250
251
251
252
253
254
254
255
256
257
259

Table of Contents | vii

LR R N 263

Why Use Patches? 264
Generating Patches 265
Patches and Topological Sorts 272
Mailing Patches 273
Applying Patches 276
Bad Patches 283
Patching Versus Merging 283
B0 BBOKS v v ot 55 650 s s rn o 4 s 545 s e s s 285
Installing Hooks 287
Example Hooks 287
Creating Your First Hook 288
Available Hooks 290
Commit-Related Hooks 290
Patch-Related Hooks 291
Push-Related Hooks 292
Other Local Repository Hooks 294
16. Combining Projectsccovvivininininineieieiinn 295
The Old Solution: Partial Checkouts 296
The Obvious Solution: Import the Code into Your Project 297
Importing Subprojects by Copying 299
Importing Subprojects with git pull -s subtree 299
Submitting Your Changes Upstream 303
The Automated Solution: Checking out Subprojects Using Custom Scripts 304
The Native Solution: gitlinks and git submodule 305
Gitlinks 306
The git submodule Command 308
17. Submodule Best Practicescocuevvivneininenin 313
Submodule Commands 314
Why Submodules? 315
Submodules Preparation 316
Why Read Only? 316
Why Not Read Only? 317
Examining the Hashes of Submodule Commits 317
Credential Reuse 318
Use Cases 318
Multilevel Nesting of Repos 319
Submodules on the Horizon 320

viii | Table of Contents

18. Using Git with Subversion Repositoriesoovvviiiiiiiiiiniinenns 321

Example: A Shallow Clone of a Single Branch 321
Making Your Changes in Git 324
Fetching Before Committing 325
Committing Through git svn rebase 326

Pushing, Pulling, Branching, and Merging with git svn 327
Keeping Your Commit IDs Straight 328
Cloning All the Branches 329
Sharing Your Repository 331
Merging Back into Subversion 332

Miscellaneous Notes on Working with Subversion 334
svn:ignore Versus .gitignore 334
Reconstructing the git-svn Cache 334

19, Alvaneth NIDAIBOITEIONE: ... oy i s 5inh w6 o 510 ini B i .. 337

Using git filter-branch 337
Examples Using git filter-branch 339
filter-branch Pitfalls 344

How I Learned to Love git rev-list 345
Date-Based Checkout 345
Retrieve Old Version of a File 348

Interactive Hunk Staging 350

Recovering a Lost Commit 360
The git fsck Command 361
Reconnecting a Lost Commit 365

20, Thos, Toloks. 2 TOOMMINON | i o vide sennins vanicknon mey s sese woe ks ik s b i 367

Interactive Rebase with a Dirty Working Directory 367

Remove Left-Over Editor Files 368

Garbage Collection 368

Split a Repository 370

Tips for Recovering Commits 371

Subversion Conversion Tips 372
General Advice 372
Remove a Trunk After an SVN Import 373
Removing SVN Commit 1Ds 373

Manipulating Branches from Two Repositories 374

Recovering from an Upstream Rebase 374

Make Your Own Git Command 376

Quick Overview of Changes 376

Cleaning Up 377

Using git-grep to Search a Repository 378

Updating and Deleting refs 380

Table of Contents | ix

21.

Following Files that Moved
Keep, But Don’t Track, This File
Have You Been Here Before?

GitandGitHubcoviiiiiii i

Repo for Public Code

Creating a GitHub Repository
Social Coding on Open Source
Watchers

News Feed

Forks

Creating Pull Requests
Managing Pull Requests
Notifications

Finding Users, Projects, and Code
Wikis

GitHub Pages (Git for Websites)
In-Page Code Editor

Subversion Bridge

Tags Automatically Becoming Archives
Organizations

REST API

Social Coding on Closed Source
Eventual Open Sourcing
Coding Models

GitHub Enterprise

GitHub in Sum

...............

381
382
382

385
385
388
390
391
392
392
394
396
398
401
402
403
405
407
408
409
410
411
411
412
414
416

CHAPTER 15
Hooks

You can use a Git hook to run one or more arbitrary scripts whenever a particular event,
such as a commit or a patch, occurs in your repository. Typically, an event is broken
into several prescribed steps, and you can tie a custom script to each step. When the
Git event occurs, the appropriate script is called at the outset of each step.

Hooks belong ro and affect a specific repository and are not copied during a clone
operation. In other words, hooks you set up in your private repository are not
propagated to and do not alter the behavior of the new clone. If for some reason your
development process mandates hooks in each coder’s personal development

repository, arrange to copy the directory .git/hooks through some other (nonclone)
method.

A hook runs either in the context of your current, local repository or in the context of
the remote repository. For example, fetching data into your repository from a remote
repository and making a local commit can cause local hooks to run; pushing changes
to a remote repository may cause hooks in the remote repository to run.

Most Git hooks fall into one of two categories:

* A “pre” hook runs before an action completes. You can use this kind of hook to
approve, reject, or adjust a change before it’s applied.
* A"post” hook runsafter an action completes and can be used to trigger notifications

(such as email) or to launch additional processing, such as running a build or
closing a bug.

As a general rule, if a pre-action hook exits with a nonzero status (the convention to
indicate failure), the Git action is aborted. In contrast, the exit status of a post-action
hook is generally ignored because the hook can no longer affect the outcome or
completion of the action.

In general, the Git developers advocate using hooks with caution. A hook, they say,
should be a method of last resort, to be used only when you can’t accomplish the same
result in some other way. For example, if you want to specify a particular option each
time you make a commit, check out a file, or create a branch, a hook is unnecessary.

285

You can accomplish the same task with a Git alias (see “Configuring an
Alias” on page 30 in Chapter 3) or with shell scripts to augment git commit,
git checkout, and git branch, respectively.!

At first blush, a hook may seem an appealing and straightforward solution. However,
there are several implications of its use.

¢ Ahook changes the behavior of Git. If a hook performs an unusual operation, other
developers familiar with Git may run into surprises when using your repository.

* A hook can slow operations that are otherwise fast. For example, developers are
often enticed to hook Git to run unit tests before anyone makes a commit, but this
makes committing slow. In Git, a commit is supposed to be a fast operation, thus
encouraging frequent commits to prevent the loss of data. Making a commit run
slowly makes Git less enjoyable.

* A hook script that is buggy can interfere with your work and productivity. The
only way to work around a hook is to disable it. In contrast, if you use an alias or
shell script instead of a hook, then you can always fall back on the normal Git
command wherever that makes sense.

* A repository’s collection of hooks is not automatically replicated. Hence, if you
install a commit hook in your repository, it won’t reliably affect another developer’s
commits. This is partly for security reasons—a malicious script could easily be
smuggled into an otherwise innocuous-looking repository—and partly because Git

simply has no mechanism to replicate anything other than blobs, trees, and
commuts.

Junio’s Overview of Hooks

Junio Hamano wrote the following about Git hooks on the Git mailing list (paraphrased
from the original).

There are five valid reasons to hook a Git command/operation:

1. To countermand the decision made by the underlying command. The
update hook and the pre-commit hook are two hooks used for this purpose.

|29

. To manipulate data generated after a command starts to run. Modifying the
commit log message in the conmit-msg hook is an example.

3. To operate on the remote end of a connection, that you access only via the
Git protocol. A post-update hook that runs git update-server-info does this
very task. i

4. To acquire a lock for mutual exclusion. This is rarely a requirement, but |
sufficient hooks are available to achieve it.

1. As it happens, running a hook at commit time is such a common requirement that a precommit hook
exists for that, even though it isn’t strictly necessary.

286 | Chapter15: Hooks

5. To run one of several possible operations, depending on the outcome of the
command. The post-checkout hook is a notable example.

| Each of these five requirements requires at least one hook. You cannot realize a
similar result from outside the Git command.

§ On the other hand, if you always want some action to occur before or after running
! a Git operation locally, you don’t need a hook. For instance, if your postprocessing
‘, depends on the effects of a command (item 5 in the list) but the results of the
command are plainly observable, then you don’t need a hook. i

With those “warnings” behind us, we can state that hooks exist for very good reasons
and that their use can be incredibly advantageous.

Installing Hooks

Each hook is a script, and the collection of hooks for a particular repository can be
found in the .git/hooks directory. As already mentioned, Git doesn’t replicate hooks
between repositories; if you git clone orgit fetch from another repository, you won’t
inherit that repository’s hooks. You have to copy the hook scripts by hand.

Each hook script is named after the event with which it is associated. For example, the
hook that runs immediately before a git commit operation is named .git/hooks/
pre-commit.

A hook script must follow the normal rules for Unix scripts: it must be executable
(chmod a+x .git/hooks/pre-commit) and must start with a line indicating the language
in which the script is written (for example, #!/bin/bash or #!/usr/bin/perl).

If a particular hook script exists and has the correct name and file permissions, Git uses
it automatically.

Example Hooks

Depending on your exact version of Git, you may find some hooks in your repository
at the time it’s created. Hooks are copied automatically from your Git template
directory when you create a new repository. On Debian and Ubuntu, for example, the
hooks are copied from /usr/share/git-core/templates/hooks. Most Git versions include

some example hooks that you can use, and these are preinstalled for you in the tem-
plates directory.

Here's what you need to know about the example hooks:
« The template hooks probably don’t do exactly what you want. You can read them,
edit them, and learn from them, but you rarely want to use them as 1s.

* Even though the hooks are created by default, all the hooks are initially disabled.
Depending on your version of Git and your operating system, the hooks are

Installing Hooks | 287

disabled either by removing the execute bit or by appending .sample to the hook
file name. Modern versions of Git have executable hooks named with a .sample
suffix.

* To enable an example hook, you must remove the .sample suffix from its filename
(mv .git/hooks/pre-commit.sample .git/hooks/pre-commit) and set its execute bit,
as 1s apropos (chmod a+x .git/hooks/pre-commit).

Originally, each example hook was simply copied into the .git/hooks/ directory from
the template directory with its execute permission removed. You could then enable the
hook by setting its execute bit.

That worked fine on systems like Unix and Linux, but didn’t work well on Windows.
In Windows, file permissions work differently and, unfortunately, files are executable
by default. This meant the example hooks were executable by default, causing great
confusion among new Git users because all the hooks ran when none should have.

Because of this problem with Windows, newer versions of Git suffix each hook file
name with .sample so it won’t run even if it’s executable. To enable the example hooks,
you’ll have to rename the appropriate scripts yourself.

If you aren’t interested in the example hooks, it is perfectly safe to remove them from
your repository: rm .git/hooks/*. You can always get them back by copying them from
their home in the templates directory.

A& .

In addition to the template examples, there are more example hooks in
Git's contrib directory, a portion of the Git source code. The supple-
2 mental files may also be installed along with Git on your system. On
" Debian and Ubuntu, for example, the contributed hooks are installed
n /usr/share/doc/git-corelcontrib/hooks.

Creating Your First Hook

To explore how a hook works, let’s create a new repository and install a simple hook.
First, we create the repository and populate it with a few files:

$ mkdir hooktest
$ cd hooktest

$ git init
Initialized empty Git repository in .git/

$ touch a b ¢
$gitaddabc
$ git commit -m 'added a, b, and c'

Created initial commit 97e9cf8: added a, b, and c
0 files changed, 0 insertions(+), 0 deletions(-)

288 | Chapter15: Hooks

create mode 100644 a
create mode 100644 b
create mode 100644 c

Next, let’s create a pre-commit hook to prevent checking in changes that contain the
word “broken.” Using your favorite text editor, put the following in a file called .git/
hooks/pre-commit:
#!/bin/bash
echo "Hello, I'm a pre-commit script!" >&2
if git diff --cached | grep '"\+' | grep -q 'broken'; then
echo "ERROR: Can't commit the word 'broken'" >&2
exit 1 # reject
fi
exit 0 # accept

The script generates a list of all differences about to be checked in, extracts the lines to
be added (that is, those lines that begin with a + character), and scans those lines for
the word “broken.”

There are many ways to test for the word “broken,” but most of the obvious ones result
in subtle problems. I'm not talking about how to “test for the word ‘broken’” but rather
about how to find the text to be scanned for the word “broken.”

For example, you might have tried the test:
if git 1s-files | xargs grep -q 'broken'; then

or, in other words, search for the word “broken,” in all files in the repository. But this
approach has two problems. If someone else had already committed a file containing
the word “broken,” then this script would prevent all future commits (until you fix it),
even if those commits are totally unrelated. Moreover, the Unix grep command has no
way of knowing which files will actually be committed; if you add “broken” to file b,
make an unrelated change to a, and then run git commit a, there’s nothing wrong with

your commit because you’re not trying to commit b. However, a script with this test
would reject it anyway.

o
e | If you write a pre-commit script that restricts what you’re allowed to

| fs. . checkin. it’s almost certain that you'll need to bypass it someday. You
Wk _ﬁ.,-?_' can bypass the pre-commit hook either by using the --no-verify option
" togit commit or by temporarily disabling your hook.

Now that you’ve created the pre-commit hook, make sure it's executable:

$ chmod a+x .git/hooks/pre-commit

And now you can test that it works as expected:
$ echo "perfectly fine" >a

$ echo "broken" >b

Installing Hooks | 289

Try to commit all files, even a 'broken' one.
$ git commit -m "test commit -a" -a

Hello, I'm a pre-commit script!

ERROR: Can't commit the word 'broken’

Selectively committing un-broken files works.
$ git commit -m "test only file a" a

Hello, I'm a pre-commit script!

Created commit 4542056: test

1 files changed, 1 insertions(+), 0 deletions(-)

And committing 'broken' files won't work.
$ git commit -m "test only file b" b
Hello, I'm a pre-commit script!

ERROR: Can't commit the word 'broken’

Observe that even when a commit works, the pre-commit script still emits “Hello.” This
would be annoying in a real script, so you should use such messages only while
debugging the script. Notice also that, when the commit is rejected, git commit doesn’t
print an error message; the only message is the one produced by the script. To avoid
confusing the user, be careful always to print an error message from a “pre” script if
1t’s going to return a nonzero (“reject”) exit code.

Given those basics, let’s talk about the different hooks you can create.

Available Hooks

As Git evolves, new hooks become available. To discover what hooks are available in
your version of Git, run git help hooks. Also refer to the Git documentation to find all
the command-line parameters as well as the input and output of each hook.

Commit-Related Hooks

When you run git commit, Git executes a process like that shown in Figure 15-1.

"] Noncof the commit hooks run for anything other than git commit. For
4@ example, git rebase, git merge, and git am don’t run your commit

i hooks by default. (Those commands may run other hooks, though.)
However, git commit --amend does run your commit hooks.

Each hook has its own purpose as follows:

* The pre-commit hook gives you the chance to immediately abort a commit if some-
thing is wrong with the content being committed. The pre-commit hook runs before
the user is allowed to edit the commit message, so the user won’t enter a commit
message only to discover the changes are rejected. You can also use this hook to
automatically modify the content of the commit.

290 | Chapter15: Hooks

pre-commit hook (unless --no-verify)

e e 1

v
(prepare default commit message)
v |
preparT-commit-msg hook

\
(let the user edit the commit message)

\
commit-msg hook (unless --no-verify)

v
(actua}ly do the commit)

I v
post-commit hook

Figure 15-1. Commit hook processing

* prepare-commit-msg lets you modify Git's default message before it is shown to the
user. For example, you can use this to change the default commit message template.

* The commit-msg hook can validate or modify the commit message after the user
edits it. For example, you can leverage this hook to check for spelling mistakes or
reject messages with lines that exceed a certain maximum length.

* post-commit runs after the commit operation has finished. At this point, you can
update a log file, send email, or trigger an autobuilder, for instance. Some people
use this hook to automatically mark bugs as fixed if, say, the bug number is men-
tioned in the commit message. In real life, however, the post-commit hook is rarely
useful, because the repository that yougit commit in is rarely the one that you share
with other people. (The update hook is likely more suitable.)

Patch-Related Hooks

When you run git am, Git executes a process like that shown in Figure 15-2.

1 . Despite what you might expect from the names of the hooks shown in
"@! Figure 15-2, git apply does not run the applypatch hooks. only

i git am does. This is because git apply doesn’t actually commit any-
thing, so there’s no reason to run any hooks.

* applypatch-msg examines the commit message attached to the patch and deter-
mines whether or not it’s acceptable. For example, you can choose to reject a patch
if it has no Signed-off-by: header. You can also modify the commit message at this
point if desired.

Available Hooks | 291

applythch-msg hook
v

(applylthe patch)
\

pre-ap;lylypatch hook

v i
(actua}ly do the commit) |

v
’ post-applypatch hook

L

Figure 15-2. Patch hook processing

* The pre-applypatch hook is somewhat misnamed, because this script actually runs
after the patch is applied but before committing the result. This makes it exactly
analogous to the pre-commit script when doing git commit, even though its name
implies otherwise. In fact, many people choose to create a pre-applypatch script
that runs pre-commit.

* post-applypatch is analogous to the post-commit script.

Push-Related Hooks

When you run git push, the receiving end of Git executes a process like the one shown
in Figure 15-3.

(recei\lle all new objects)
Vv
pre-receive hook

v
for each updated ref:

V ;
up(liate hook !
vV
update ref

Vv
post-receive hook

v
post-update hook

L

Figure 15-3. Receive hook processing

292 | Chapter15: Hooks

& %

""j All push-related hooks run on the receiver, not the sender. Thus, the

| :‘,‘ ~ hook scripts that run are in the .git/hooks directory of the receiving
' j ! repository, not the sending one. Output produced by remote hooks is
" still shown to the user doing the git push.

As you can see in the diagram, the very first step of git push is to transfer all the missing
objects (blobs, trees, and commits) from your local repository to the remote one. There
is no need for a hook during this process because all Git objects are identified by their
unique SHA1 hash; your hook cannot modify an object because it would change the
hash. T'urthermore, there’s no reason to reject an object, because git gc cleans up
anyway if the object turns out to be unneeded.

Instead of manipulating the objects themselves, push-related hooks are called when it’s
time to update the refs (branches and rags).

* pre-receivereceives a list of all the refs that are to be updated, including their new
and old object pointers. The only thing the prereceive hook can do 1s accept or
reject all the changes at once, which is of limited use. You might consider it a
feature, though, because it enforces transactional integrity across branches. Yert,

it’s not clear why you'd need such a thing; if you don’t like that behavior, use the
update hook instead.

The update hook is called exactly once for each ref being updated. The update hook
can choose to accept or reject updates to individual branches, without affecting
whether other branches are updated or not. Also for each update you can trigger
an action such as closing a bug or sending an email acknowledgment. It’s usually
better to handle such notifications here than in a post-commit hook, because a
commit s not really considered “final” until it’s been pushed to a shared repository.

Like the prereceive hook, post-receive receives a list of all the refs that have just
been updated. Anything that post-receive can do could also be done by the
update hook, but sometimes post-receive is more convenient. For example, if you
want to send an update notification email message, post-receive can send just a
single notification about all updates instead of a separate email for each update.

Don’t use the post-update hook. It has been superseded by the newer

post-receive hook. (post-update knows what branches have changed but not what
their old values were; this limited its usefulness.)

Other Local Repository Hooks

Finally, there are a few miscellaneous hooks, and by the time you regd this there may
be even more. (Again, you can find the list of available hooks quickly with the command
git help hooks.)

+ The pre-rebase hook runs when you attempt to rebase a branch. This is useful
because it can stop you from accidentally running git rebase on a branch that
shouldn’t be rebased because it’s already been published.

* post-checkout runs after you check out a branch or an i11di\ri4931 file. }‘Tor example,
you can use this to automatically create empty directories (Git doesn't know hO\y
to track empty directories) or to set file permissions or Access Contrgl List (ACLs)
on checked out files (Git doesn’t track ACLs). You might think of using this to
modify files after checking them out—for example, to do R.CS-Style..\'ariable
substitution—but it’s not such a good idea because Git will think the files have
been locally modified. For such a rask, use smudge/clean filters instead.

* post-merge runs after you perform a merge operation. This is rare}y used. If your
pre-commit hook does some sort of change to the repository, you might need to use
a post-merge script to do something similar.

* pre-auto-gc helps git gc --auto decide whether or not it’s time to clean up. Ypu
can make git gc --auto skip its git gc task by returning nonzero from this script.
This will rarely be needed, however.

Programming

\

Version Control with Git

Get up to speed on Git for tracking, branching, merging. and
managing code revisions. Through a series of step-by-step
tutorials, this practical guide takes you quickly from Git
fundamentals to advanced techniques, and provides friendly yet
rigorous advice for navigating the many functions of this open
source version control system.

This thoroughly revised edition also includes tips for manipulating
trees, extended coverage of the reflog and stash, and a complete
introduction to the GitHub repository. Git lets you manage code
development in a virtually endless variety of ways, once you
understand how to harness the system’s flexibility. This book
shows you how.

B Learn how to use Git for several real-world development
scenarios

® Gain insight into Git's common-use cases, initial tasks, and
basic functions

® Use the system for both centralized and distributed version
control

B Learn how to manage merges, conflicts, patches, and diffs

® Apply advanced techniques such as rebasing, hooks, and ways
to handle submodules

® Interact with Subversion (SVN) repositories—including SVN

Jon Loeliger, a software
engineer at Freescale
Semiconductor, Inc.. works
on open source projects such
as Git, Linux, and U-Boot.
He’s given Git tutorials at
conferences such as Linux
World, and has contributed
articles to Linux Magazine.

Matthew McCullough, VP

of Training for GitHub, is a
I5-year veteran of enterprise
software development and an
open source educator. Matthew
is the creator of O'Reilly’s

Git Master Class series.

to Git conversions
® Navigate, use, and contribute to open source projects
through GitHub
Twitter: @oreillymedia
facebook.com/oreilly
US $36.99 CAN $38.99

ISBN: 978-1-449-31638-9

ROORAN OO
SR

O’REILLY®

oreilly.com

