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CHAPTER 15
Hooks

You can use a Git hook to run one or more arbitrary scripts whenever a particular event,
such as a commit or a patch, occurs in your repository. Typically, an event is broken
into several prescribed steps, and you can tie a custom script to each step. When the
Git event occurs, the appropriate script is called at the outset of each step.

Hooks belong ro and affect a specific repository and are not copied during a clone
operation. In other words, hooks you set up in your private repository are not
propagated to and do not alter the behavior of the new clone. If for some reason your
development process mandates hooks in each coder’s personal development

repository, arrange to copy the directory .git/hooks through some other (nonclone)
method.

A hook runs either in the context of your current, local repository or in the context of
the remote repository. For example, fetching data into your repository from a remote
repository and making a local commit can cause local hooks to run; pushing changes
to a remote repository may cause hooks in the remote repository to run.

Most Git hooks fall into one of two categories:

* A “pre” hook runs before an action completes. You can use this kind of hook to
approve, reject, or adjust a change before it’s applied.
* A"post” hook runsafter an action completes and can be used to trigger notifications

(such as email) or to launch additional processing, such as running a build or
closing a bug.

As a general rule, if a pre-action hook exits with a nonzero status (the convention to
indicate failure), the Git action is aborted. In contrast, the exit status of a post-action
hook is generally ignored because the hook can no longer affect the outcome or
completion of the action.

In general, the Git developers advocate using hooks with caution. A hook, they say,
should be a method of last resort, to be used only when you can’t accomplish the same
result in some other way. For example, if you want to specify a particular option each
time you make a commit, check out a file, or create a branch, a hook is unnecessary.
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You can accomplish the same task with a Git alias (see “Configuring an
Alias” on page 30 in Chapter 3) or with shell scripts to augment git commit,
git checkout, and git branch, respectively.!

At first blush, a hook may seem an appealing and straightforward solution. However,
there are several implications of its use.

¢ Ahook changes the behavior of Git. If a hook performs an unusual operation, other
developers familiar with Git may run into surprises when using your repository.

* A hook can slow operations that are otherwise fast. For example, developers are
often enticed to hook Git to run unit tests before anyone makes a commit, but this
makes committing slow. In Git, a commit is supposed to be a fast operation, thus
encouraging frequent commits to prevent the loss of data. Making a commit run
slowly makes Git less enjoyable.

* A hook script that is buggy can interfere with your work and productivity. The
only way to work around a hook is to disable it. In contrast, if you use an alias or
shell script instead of a hook, then you can always fall back on the normal Git
command wherever that makes sense.

* A repository’s collection of hooks is not automatically replicated. Hence, if you
install a commit hook in your repository, it won’t reliably affect another developer’s
commits. This is partly for security reasons—a malicious script could easily be
smuggled into an otherwise innocuous-looking repository—and partly because Git

simply has no mechanism to replicate anything other than blobs, trees, and
commuts.

Junio’s Overview of Hooks

Junio Hamano wrote the following about Git hooks on the Git mailing list (paraphrased
from the original).

There are five valid reasons to hook a Git command/operation:

1. To countermand the decision made by the underlying command. The
update hook and the pre-commit hook are two hooks used for this purpose.

|29

. To manipulate data generated after a command starts to run. Modifying the
commit log message in the conmit-msg hook is an example.

3. To operate on the remote end of a connection, that you access only via the
Git protocol. A post-update hook that runs git update-server-info does this
very task. i

4. To acquire a lock for mutual exclusion. This is rarely a requirement, but |
sufficient hooks are available to achieve it.

1. As it happens, running a hook at commit time is such a common requirement that a precommit hook
exists for that, even though it isn’t strictly necessary.

286 | Chapter15: Hooks



5. To run one of several possible operations, depending on the outcome of the
command. The post-checkout hook is a notable example.

| Each of these five requirements requires at least one hook. You cannot realize a
similar result from outside the Git command.

§ On the other hand, if you always want some action to occur before or after running
! a Git operation locally, you don’t need a hook. For instance, if your postprocessing
‘, depends on the effects of a command (item 5 in the list) but the results of the
command are plainly observable, then you don’t need a hook. i

With those “warnings” behind us, we can state that hooks exist for very good reasons
and that their use can be incredibly advantageous.

Installing Hooks

Each hook is a script, and the collection of hooks for a particular repository can be
found in the .git/hooks directory. As already mentioned, Git doesn’t replicate hooks
between repositories; if you git clone orgit fetch from another repository, you won’t
inherit that repository’s hooks. You have to copy the hook scripts by hand.

Each hook script is named after the event with which it is associated. For example, the
hook that runs immediately before a git commit operation is named .git/hooks/
pre-commit.

A hook script must follow the normal rules for Unix scripts: it must be executable
(chmod a+x .git/hooks/pre-commit) and must start with a line indicating the language
in which the script is written (for example, #!/bin/bash or #!/usr/bin/perl).

If a particular hook script exists and has the correct name and file permissions, Git uses
it automatically.

Example Hooks

Depending on your exact version of Git, you may find some hooks in your repository
at the time it’s created. Hooks are copied automatically from your Git template
directory when you create a new repository. On Debian and Ubuntu, for example, the
hooks are copied from /usr/share/git-core/templates/hooks. Most Git versions include

some example hooks that you can use, and these are preinstalled for you in the tem-
plates directory.

Here's what you need to know about the example hooks:
« The template hooks probably don’t do exactly what you want. You can read them,
edit them, and learn from them, but you rarely want to use them as 1s.

* Even though the hooks are created by default, all the hooks are initially disabled.
Depending on your version of Git and your operating system, the hooks are
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disabled either by removing the execute bit or by appending .sample to the hook
file name. Modern versions of Git have executable hooks named with a .sample
suffix.

* To enable an example hook, you must remove the .sample suffix from its filename
(mv .git/hooks/pre-commit.sample .git/hooks/pre-commit) and set its execute bit,
as 1s apropos (chmod a+x .git/hooks/pre-commit).

Originally, each example hook was simply copied into the .git/hooks/ directory from
the template directory with its execute permission removed. You could then enable the
hook by setting its execute bit.

That worked fine on systems like Unix and Linux, but didn’t work well on Windows.
In Windows, file permissions work differently and, unfortunately, files are executable
by default. This meant the example hooks were executable by default, causing great
confusion among new Git users because all the hooks ran when none should have.

Because of this problem with Windows, newer versions of Git suffix each hook file
name with .sample so it won’t run even if it’s executable. To enable the example hooks,
you’ll have to rename the appropriate scripts yourself.

If you aren’t interested in the example hooks, it is perfectly safe to remove them from
your repository: rm .git/hooks/*. You can always get them back by copying them from
their home in the templates directory.

A& .

In addition to the template examples, there are more example hooks in
Git's contrib directory, a portion of the Git source code. The supple-
2 mental files may also be installed along with Git on your system. On
" Debian and Ubuntu, for example, the contributed hooks are installed
n /usr/share/doc/git-corelcontrib/hooks.

Creating Your First Hook

To explore how a hook works, let’s create a new repository and install a simple hook.
First, we create the repository and populate it with a few files:

$ mkdir hooktest
$ cd hooktest

$ git init
Initialized empty Git repository in .git/

$ touch a b ¢
$gitaddabc
$ git commit -m 'added a, b, and c'

Created initial commit 97e9cf8: added a, b, and c
0 files changed, 0 insertions(+), 0 deletions(-)
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create mode 100644 a
create mode 100644 b
create mode 100644 c

Next, let’s create a pre-commit hook to prevent checking in changes that contain the
word “broken.” Using your favorite text editor, put the following in a file called .git/
hooks/pre-commit:
#!/bin/bash
echo "Hello, I'm a pre-commit script!" >&2
if git diff --cached | grep '"\+' | grep -q 'broken'; then
echo "ERROR: Can't commit the word 'broken'" >&2
exit 1 # reject
fi
exit 0 # accept

The script generates a list of all differences about to be checked in, extracts the lines to
be added (that is, those lines that begin with a + character), and scans those lines for
the word “broken.”

There are many ways to test for the word “broken,” but most of the obvious ones result
in subtle problems. I'm not talking about how to “test for the word ‘broken’” but rather
about how to find the text to be scanned for the word “broken.”

For example, you might have tried the test:
if git 1s-files | xargs grep -q 'broken'; then

or, in other words, search for the word “broken,” in all files in the repository. But this
approach has two problems. If someone else had already committed a file containing
the word “broken,” then this script would prevent all future commits (until you fix it),
even if those commits are totally unrelated. Moreover, the Unix grep command has no
way of knowing which files will actually be committed; if you add “broken” to file b,
make an unrelated change to a, and then run git commit a, there’s nothing wrong with

your commit because you’re not trying to commit b. However, a script with this test
would reject it anyway.

o
e | If you write a pre-commit script that restricts what you’re allowed to

| fs. . checkin. it’s almost certain that you'll need to bypass it someday. You
Wk _ﬁ.,-?_' can bypass the pre-commit hook either by using the --no-verify option
" togit commit or by temporarily disabling your hook.

Now that you’ve created the pre-commit hook, make sure it's executable:

$ chmod a+x .git/hooks/pre-commit

And now you can test that it works as expected:
$ echo "perfectly fine" >a

$ echo "broken" >b
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# Try to commit all files, even a 'broken' one.
$ git commit -m "test commit -a" -a

Hello, I'm a pre-commit script!

ERROR: Can't commit the word 'broken’

# Selectively committing un-broken files works.
$ git commit -m "test only file a" a

Hello, I'm a pre-commit script!

Created commit 4542056: test

1 files changed, 1 insertions(+), 0 deletions(-)

# And committing 'broken' files won't work.
$ git commit -m "test only file b" b
Hello, I'm a pre-commit script!

ERROR: Can't commit the word 'broken’

Observe that even when a commit works, the pre-commit script still emits “Hello.” This
would be annoying in a real script, so you should use such messages only while
debugging the script. Notice also that, when the commit is rejected, git commit doesn’t
print an error message; the only message is the one produced by the script. To avoid
confusing the user, be careful always to print an error message from a “pre” script if
1t’s going to return a nonzero (“reject”) exit code.

Given those basics, let’s talk about the different hooks you can create.

Available Hooks

As Git evolves, new hooks become available. To discover what hooks are available in
your version of Git, run git help hooks. Also refer to the Git documentation to find all
the command-line parameters as well as the input and output of each hook.

Commit-Related Hooks

When you run git commit, Git executes a process like that shown in Figure 15-1.

"] Noncof the commit hooks run for anything other than git commit. For
4@ example, git rebase, git merge, and git am don’t run your commit

i hooks by default. (Those commands may run other hooks, though.)
However, git commit --amend does run your commit hooks.

Each hook has its own purpose as follows:

* The pre-commit hook gives you the chance to immediately abort a commit if some-
thing is wrong with the content being committed. The pre-commit hook runs before
the user is allowed to edit the commit message, so the user won’t enter a commit
message only to discover the changes are rejected. You can also use this hook to
automatically modify the content of the commit.
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pre-commit hook (unless --no-verify)

e e 1

v
(prepare default commit message)
v |
preparT-commit-msg hook

\
(let the user edit the commit message)

\
commit-msg hook (unless --no-verify)

v
(actua}ly do the commit)

I v
post-commit hook

Figure 15-1. Commit hook processing

* prepare-commit-msg lets you modify Git's default message before it is shown to the
user. For example, you can use this to change the default commit message template.

* The commit-msg hook can validate or modify the commit message after the user
edits it. For example, you can leverage this hook to check for spelling mistakes or
reject messages with lines that exceed a certain maximum length.

* post-commit runs after the commit operation has finished. At this point, you can
update a log file, send email, or trigger an autobuilder, for instance. Some people
use this hook to automatically mark bugs as fixed if, say, the bug number is men-
tioned in the commit message. In real life, however, the post-commit hook is rarely
useful, because the repository that yougit commit in is rarely the one that you share
with other people. (The update hook is likely more suitable.)

Patch-Related Hooks

When you run git am, Git executes a process like that shown in Figure 15-2.

1 . Despite what you might expect from the names of the hooks shown in
"@! Figure 15-2, git apply does not run the applypatch hooks. only

i git am does. This is because git apply doesn’t actually commit any-
thing, so there’s no reason to run any hooks.

* applypatch-msg examines the commit message attached to the patch and deter-
mines whether or not it’s acceptable. For example, you can choose to reject a patch
if it has no Signed-off-by: header. You can also modify the commit message at this
point if desired.
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applythch-msg hook
v

(applylthe patch)
\

pre-ap;lylypatch hook

v i
(actua}ly do the commit) |

v
’ post-applypatch hook

L

Figure 15-2. Patch hook processing

* The pre-applypatch hook is somewhat misnamed, because this script actually runs
after the patch is applied but before committing the result. This makes it exactly
analogous to the pre-commit script when doing git commit, even though its name
implies otherwise. In fact, many people choose to create a pre-applypatch script
that runs pre-commit.

* post-applypatch is analogous to the post-commit script.

Push-Related Hooks

When you run git push, the receiving end of Git executes a process like the one shown
in Figure 15-3.

(recei\lle all new objects)
Vv
pre-receive hook

v
for each updated ref:

V ;
up(liate hook !
vV
update ref

Vv
post-receive hook

v
post-update hook

L

Figure 15-3. Receive hook processing
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""j All push-related hooks run on the receiver, not the sender. Thus, the

| :‘,‘ ~ hook scripts that run are in the .git/hooks directory of the receiving
' j ! repository, not the sending one. Output produced by remote hooks is
" still shown to the user doing the git push.

As you can see in the diagram, the very first step of git push is to transfer all the missing
objects (blobs, trees, and commits) from your local repository to the remote one. There
is no need for a hook during this process because all Git objects are identified by their
unique SHA1 hash; your hook cannot modify an object because it would change the
hash. T'urthermore, there’s no reason to reject an object, because git gc cleans up
anyway if the object turns out to be unneeded.

Instead of manipulating the objects themselves, push-related hooks are called when it’s
time to update the refs (branches and rags).

* pre-receivereceives a list of all the refs that are to be updated, including their new
and old object pointers. The only thing the prereceive hook can do 1s accept or
reject all the changes at once, which is of limited use. You might consider it a
feature, though, because it enforces transactional integrity across branches. Yert,

it’s not clear why you'd need such a thing; if you don’t like that behavior, use the
update hook instead.

The update hook is called exactly once for each ref being updated. The update hook
can choose to accept or reject updates to individual branches, without affecting
whether other branches are updated or not. Also for each update you can trigger
an action such as closing a bug or sending an email acknowledgment. It’s usually
better to handle such notifications here than in a post-commit hook, because a
commit s not really considered “final” until it’s been pushed to a shared repository.

Like the prereceive hook, post-receive receives a list of all the refs that have just
been updated. Anything that post-receive can do could also be done by the
update hook, but sometimes post-receive is more convenient. For example, if you
want to send an update notification email message, post-receive can send just a
single notification about all updates instead of a separate email for each update.

Don’t use the post-update hook. It has been superseded by the newer

post-receive hook. (post-update knows what branches have changed but not what
their old values were; this limited its usefulness.)

Other Local Repository Hooks

Finally, there are a few miscellaneous hooks, and by the time you regd this there may
be even more. (Again, you can find the list of available hooks quickly with the command
git help hooks.)

+ The pre-rebase hook runs when you attempt to rebase a branch. This is useful
because it can stop you from accidentally running git rebase on a branch that
shouldn’t be rebased because it’s already been published.

* post-checkout runs after you check out a branch or an i11di\ri4931 file. }‘Tor example,
you can use this to automatically create empty directories (Git doesn't know hO\y
to track empty directories) or to set file permissions or Access Contrgl List (ACLs)
on checked out files (Git doesn’t track ACLs). You might think of using this to
modify files after checking them out—for example, to do R.CS-Style..\'ariable
substitution—but it’s not such a good idea because Git will think the files have
been locally modified. For such a rask, use smudge/clean filters instead.

* post-merge runs after you perform a merge operation. This is rare}y used. If your
pre-commit hook does some sort of change to the repository, you might need to use
a post-merge script to do something similar.

* pre-auto-gc helps git gc --auto decide whether or not it’s time to clean up. Ypu
can make git gc --auto skip its git gc task by returning nonzero from this script.
This will rarely be needed, however.
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